Search results for "SHIFTING BALANCE"

showing 3 items of 3 documents

The impact of life stage and pigment source on the evolution of novel warning signal traits

2021

Our understanding of how novel warning color traits evolve in natural populations is largely based on studies of reproductive stages and organisms with endogenously produced pigmentation. In these systems, genetic drift is often required for novel alleles to overcome strong purifying selection stemming from frequency-dependent predation and positive assortative mating. Here, we integrate data from field surveys, predation experiments, population genomics, and phenotypic correlations to explain the origin and maintenance of geographic variation in a diet-based larval pigmentation trait in the redheaded pine sawfly (Neodiprion lecontei), a pine-feeding hymenopteran. Although our experiments c…

varoitusvärimäntypistiäisetecological geneticsPopulationFREQUENCY-DEPENDENT SELECTIONevoluutioAposematismPredationravintoNegative selectionchemical defenseGenetic driftAposematismpolytypic colorationGeneticsAnimalsaposematismCOLORPOPULATION-GENETICSmuuntelu (biologia)educationEcology Evolution Behavior and Systematicseducation.field_of_studybiologyPigmentationfungiAssortative matingcarotenoidsfood and beverageshost adaptationbiology.organism_classificationBiological EvolutionHymenopterakarotenoiditREAD ALIGNMENTNeodiprion leconteiSawflyCHEMICAL DEFENSEPhenotypeEvolutionary biologyTRADE-OFFLarvaPredatory Behavior1181 Ecology evolutionary biologySHIFTING BALANCEWOOD TIGER MOTHGeneral Agricultural and Biological SciencesGENETIC CORRELATIONSMULLERIAN MIMICRYEvolution
researchProduct

Biased predation could promote convergence yet maintain diversity within Müllerian mimicry rings of Oreina leaf beetles.

2019

Mullerian mimicry is a classic example of adaptation, yet Muller's original theory does not account for the diversity often observed in mimicry rings. Here, we aimed to assess how well classical Mullerian mimicry can account for the colour polymorphism found in chemically defended Oreina leaf beetles by using field data and laboratory assays of predator behaviour. We also evaluated the hypothesis that thermoregulation can explain diversity between Oreina mimicry rings. We found that frequencies of each colour morph were positively correlated among species, a critical prediction of Mullerian mimicry. Predators learned to associate colour with chemical defences. Learned avoidance of the green…

0106 biological sciences0301 basic medicineMaleFrequency-dependent selectioncolor polymorphismlehtikuoriaisetFREQUENCY-DEPENDENT SELECTIONAVOIDANCEPREYAsteraceae01 natural sciencesMüllerian mimicryPredationPYRROLIZIDINE ALKALOIDSConvergent evolutionPigmentationBiological MimicryOreinaColeopteraWARNING COLORATIONPHYLOGENETIC EVIDENCECHEMICAL DEFENSE1181 Ecology evolutionary biologyFemalevaroitusvärievoluutioZoologyAposematismBiology010603 evolutionary biologyBirds03 medical and health sciencescolour polymorphismmonimuotoisuusAnimalsaposematismconvergent evolutionSelection GeneticEcology Evolution Behavior and SystematicsEcosystemkonvergenssimimikrybiology.organism_classificationEVOLUTIONPATTERN030104 developmental biologyMimicrywarning signalSHIFTING BALANCEAdaptationApiaceaeJournal of evolutionary biologyREFERENCES
researchProduct

Why aren't warning signals everywhere? : On the prevalence of aposematism and mimicry in communities

2021

Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. He…

0106 biological sciencesvaroitusväri570predator-prey interactionsFREQUENCY-DEPENDENT SELECTIONFrequency-dependent selectionPopulationBatesian mimicryAposematismMacroevolutionModels Biological010603 evolutionary biology01 natural sciencesRISK-TAKINGGeneral Biochemistry Genetics and Molecular BiologyMüllerian mimicryPredationANTIPREDATOR DEFENSES03 medical and health sciencesPrevalenceAnimalsaposematismecological nicheeducationMullerian mimicryBODY-SIZE030304 developmental biology0303 health scienceseducation.field_of_studyMüllerian mimicryEcologyBiological Mimicrymimikrypredator–prey interactionseliöyhteisötBiological EvolutionBatesian mimicrysaalistusekologinen lokeroCORAL-SNAKE PATTERNCHEMICAL DEFENSEGeographyCOLOR PATTERNPredatory Behavior1181 Ecology evolutionary biologyMimicrySHIFTING BALANCEGeneral Agricultural and Biological Sciencescommunity ecology
researchProduct